

Insights into research on carbon capture and storage

Markus Bauer, Uni Bayreuth

Bayreuth Center of Ecology and Environmental Research

J. Bilbao, H. Fischer

The starting point...

- Climate change
- Greenhouse gas emissions
- Energy demand and supply

Global Warming

 Of the 12 warmest years ever recorded (~1850) 11 were in the last 2 decades

IPCC

Greenhouse effect

"Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas (GHG) concentrations."

IPCC synthesis report 2007

Source: http://www.esrl.noaa.gov/gmd/aggi/

Global anthropogenic GHG emissions

IPCC

Kyoto political aims

- Restriction of global warming to less than 2 °C
- Drastic reduction in CO₂ emissions

- Energy demand rises (Factor 2 until 2100)
- Largest increase in developing countries

Why CO₂?

- Low global warming potential, but:
 - Long lifetime within the atmosphere
 - High emissions current emissions
 - Increasing emissions due to rising energy demand:
- Highest radiative forcing (about 2/3)
- Emission from point sources

Situation in Germany

- CO₂ from power generation: ~0,35 Gt/a
- Total CO₂ emissions: ~ 0,8 Gt/a
- Reduction aims:
- -40 % by 2020
- -80% by 2050
- Reinvestment in energy production

Energiekonzept 2010, SRU Gutachten CCS

Options to reduce CO₂ emissions

Efficiency

Costs

Nuclear

Acceptance? Waste storage?

Renewable

Expansion Power grid? Buffering?

Fossil with CCS

Costs
Storage savety?

Contents

- Background
- Overview on CCS

- •ALCATRAP: Mineral CO2 binding
- Final remarks

The three steps of "classic" CCS

The three steps of "classic" CCS

Flue gas CO₂

Capture

Purified CO₂

Transport

- Capture options
 - Post combustion
 - Pre combustion
 - Oxyfuel

Purified CO₂

Storage

Stored CO₂

The CO2 capture step

- **■**CO₂: 8-16 % => > 85 %
- Amines etc. as sorbents (recycling!)
- Volume decrease: Purification and compression

Fossile fuel based power generation

Pre-combustion capture: H2, Fuels

Post-combustion capture

Oxyfuel: Pure O2

Summary CO2 capture

- Post combustion is available technology
- (Alternatives in demonstration)
- Up scaling, optimization
- Retrofitting
- Energy required: Efficiency loss of ~10-40 %
 - Power plant efficiency without CCS: 35 55%
 - Power plant efficiency loss: 8 to 15 %

The three steps of "classic" CCS

Flue gas CO₂

Capture

Purified CO₂

Transport

- Storage options
 - Geological (CCGS)
 - Ocean (CCOS)
 - •Minerals (CCMS?)
 - CO2 Utilization

Purified CO₂

Storage

Stored CO₂

Geological storage

Geological storage capacity

Theoretical storage capacities

	Lower estimate GtCO2	Upper estimate GtCO2	Germany GtCO2
Oil and gas fields	674	900	~2,7
Coal seams	3-15	200	?
Deep Saline aquifers	1000	Possibly 10 ⁴	~20

- World emissions ~ 8 GtCO2/a from power
- Germany ~0,35 GtCO2/a from power
- Reach: 40 100 a

Processes in the formation

- Physical:
 - Trapping below cap rock
 - Hydrodynamic trapping

- Chemical:
 - Dissolution
 - Reaction

Safety of storage is expected to increase over time

"Storage" sites

Natural analogues

Geological storage risks

- Leakage
 - Gaps or faults in cap rock
 - Bore holes
 - Pressure or reactions weaken cap rock
 - STORAGE FAILED!!!
 - Affected groundwater (pH, metal mobility)
 - Toxicity
- Individual assessment and selection of sites

Ocean storage - +/- given up

Mineral Trapping of CO₂

- Natural process
 - CO₂ uptake estimate: up to 0,1 Gt C/a
- Longtime stability of the product
- Unlimited pool of reactive materials

- Flaws:
 - Slow mineral reaction
 - Slow CO2 transport

Availibility of Mg silicates

Bayreuth Center of Ecology

Mineral Carbonation

$$Mg_2SiO_4 + 2CO_2 = 2MgCO_3 + SiO_2$$

$$CaO + CO_2 = CaCO_3$$

	Natural minerals	Alkaline wastes
Capacity	+	_
Reactivity	_	+
Pretreatment, Transport	_	+
Waste utilization		(+)

Ex situ mineral carbonation

- Mining, pre-treatment
- Carbonation: Exergonic but slow!
 - Dry at high T and p
 - Wet system at low T
- Product: 0.35 Gt CO2/a = 0.7 Gt MgCO₃/a

Summary Storage

- Still different storage option discusse
- Theoretically > 100 a of storage capacities in geological storage
 - Risk assessment for reservoirs
- "Unlimited" storage capacity in mineral carbonation
 - Exergonic but slow reaction: Technical issue
 - Product?

ALCATRAP – Carbonation of alkaline industrial wastes

Source material in Germany

- Alkaline waste production in Germany annually
 - Lignite combustion ~10-15 Mt/a
 - Steel making residues ~10 Mt/a
 - Other sources (Small power plants, ...)
- Direct carbonation ex situ at power plant
- Ambient T and p
- Untreated flue gas as source of CO₂

"ALF" - Aqueous Laboratory Reactor

Online data: pH, EC, T, Q(gas), pCO2 (out)

Sampling data: Dissolved species (TDIC, metal, sulfate)
Suspended solid phases (carbonate)

Reactions

CO₂ uptake in aqueous reaction system

SEM/EDX EDX: High content in Ca, C and S Mag = 1.00 K X Signal A = InLens S Signal B = InLens M File Name = P28-2_04.tif Signal = 1.000 Mixing = Off EHT = 3.00 kV BIMF Date :24 Nov 2010 Mag = 2.50 K X WD = 4 mm

The ALCATRAP pilot plant

Gewerbepark Natur & Energie (GNE), Rednitzhembach

Biomass power plant

Bayceer

Bayreuth Center of Ecology and Environmental Research

Lignite ash reaction in the pilot plant

- Semi-batch: Regulation by pH: 8,5 to 9,5
- Time between start gas flow to first exchange

CO₂ binding with different materials

	Lignite	Biomass	Wood
Total binding capacity (mol CO ₂ / kg material)	0.7 - 0.9	1.2 - <mark>2.1</mark>	0.5 - 1.1
CO ₂ uptake (% of total flux)	5-20	6-25	0.5-9

Perspective: CO₂ binding potential

- Annually for Germany:
 - ➤ Up to 10 20 Mt alkaline rersidues
 - ➤ Binding potential of up to 2 Mt CO₂
- Within an power plant
 - Internal cycle of a power plant, "on site"
 - ➤ Recovery of 0,5 1 % of the CO₂

Utilization scenarios

Deposition "as is" above or below ground

<

Easier deposition above or below ground

<

Application as building material

"Pacification" of the waste material

Conclusions on ALCATRAP

- Successful demonstration of CO₂ binding by alkaline waste suspensions in pilot scale
- Estimation of CO₂ storage potential possible
- Optimization potential in engineering, Scale up
- Utilization of products required

Some comments

- Reducing CO₂ emission will cause an increase in energy prices
- Time matters! How fast can the technologies be implemented?
- Society:
 - Public acceptance
 - Global problem
 - Energy imports?

"Air capture" – The last resort

- If we fail to reduce emissions in time:
- "Artificial trees": Chemical binding of CO2 from air
 - 40-70 GJ/t CO2 energy supplied
 - 30-60 GJ/ CO2 energy required for air capture,
 - > 50 % loss in efficiency

Source materials

- IPCC 2007: Synthesis report on climate change
- IPCC 2005: Special report on CCS
- IEA 2004: World energy outlook
- Gaia 3/2009: Schwerpunkt CCS
- Greenpeace 2010: Falsche Hoffnungen
- Nature Geoscience 12/2009: Locking Carbon in minerals
- Elements 5/2008: Carbon Dioxide Sequestration
- BMBF 2008-2010: CO2 Utilization, Geotechnologien
- BMU/BMBWi 2010: Energiekonzept
- Etc. ...

Thanks to...

- ALCATRAP collegues
 - S. Peiffer, N. Hopf, E. Hofstetter, N. Gassen

 Financial support: Federal Ministry for Education and Reserach, Germany